Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
ACS Chem Neurosci ; 14(11): 2089-2097, 2023 06 07.
Article in English | MEDLINE | ID: covidwho-2314337

ABSTRACT

Angiotensin-converting enzyme 2 receptor (ACE2R) is a transmembrane protein expressed in various tissues throughout the body that plays a key role in the regulation of blood pressure. Recently, ACE2R has gained significant attention due to its involvement in the pathogenesis of COVID-19, the disease caused by the Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2). While ACE2 receptors serve as entry points for the novel coronavirus, Transmembrane Serine Protease 2 (TMPRSS2), an enzyme located on the cell membrane, is required for SARS-CoV-2 S protein priming. Even though numerous studies have assessed the effects of COVID-19 on the brain, very little information is available concerning the distribution of ACE2R and TMPRSS2 in the human brain, with particular regard to their topographical expression in the brainstem. In this study, we investigated the expression of ACE2R and TMPRSS2 in the brainstem of 18 adult subjects who died due to pneumonia/respiratory insufficiency. Our findings indicate that ACE2R and TMPRSS2 are expressed in neuronal and glial cells of the brainstem, particularly at the level of the vagal nuclei of the medulla and the midbrain tegmentum, thus confirming the expression and anatomical localization of these proteins within specific human brainstem nuclei. Furthermore, our findings help to define anatomically susceptible regions to SARS-CoV-2 infection in the brainstem, advancing knowledge on the neuropathological underpinnings of neurological manifestations in COVID-19.


Subject(s)
COVID-19 , Adult , Humans , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Brain Stem , Serine Endopeptidases/genetics
2.
J Neurol ; 270(4): 2162-2173, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2309815

ABSTRACT

BACKGROUND: Caring for a partner or family member with Parkinson's disease (PD) negatively affects the caregiver's own physical and emotional well-being, especially those caring for people with advanced PD (APD). This study was designed to examine the impact of APD on caregiver perceived burden, quality of life (QoL), and health status. METHODS: Dyads of people with PD and their primary caregivers were identified from the Adelphi Parkinson's Disease Specific Program (DSP™) using real-world data from the United States, Japan and five European countries. Questionnaires were used to capture measures of clinical burden (people with PD) and caregiver burden (caregivers). RESULTS: Data from 721 patient-caregiver dyads in seven countries were captured. Caregivers had a mean age 62.6 years, 71.6% were female, and 70.4% were a spouse. Caregivers for people with APD had a greater perceived burden, were more likely to take medication and had lower caregiver treatment satisfaction than those caring for people with early or intermediate PD; similar findings were observed for caregivers of people with intermediate versus early PD. Caregivers for people with intermediate PD were also less likely to be employed than those with early PD (25.3% vs 42.4%) and spent more time caring (6.6 vs 3.2 h/day). CONCLUSIONS: This real-world study demonstrates that caregivers of people with APD experience a greater burden than those caring for people with early PD. This highlights the importance of including caregiver-centric measures in future studies, and emphasizes the need for implementing treatments that reduce caregiver burden in APD. TRIAL REGISTRATION: N/A.


Subject(s)
Parkinson Disease , Quality of Life , Humans , Female , Middle Aged , Male , Quality of Life/psychology , Parkinson Disease/therapy , Parkinson Disease/psychology , Cost of Illness , Caregivers/psychology , Health Status , Surveys and Questionnaires
3.
NPJ Parkinsons Dis ; 9(1): 25, 2023 Feb 13.
Article in English | MEDLINE | ID: covidwho-2240519

ABSTRACT

Neurological manifestations are common in COVID-19, the disease caused by SARS-CoV-2. Despite reports of SARS-CoV-2 detection in the brain and cerebrospinal fluid of COVID-19 patients, it is still unclear whether the virus can infect the central nervous system, and which neuropathological alterations can be ascribed to viral tropism, rather than immune-mediated mechanisms. Here, we assess neuropathological alterations in 24 COVID-19 patients and 18 matched controls who died due to pneumonia/respiratory failure. Aside from a wide spectrum of neuropathological alterations, SARS-CoV-2-immunoreactive neurons were detected in the dorsal medulla and in the substantia nigra of five COVID-19 subjects. Viral RNA was also detected by real-time RT-PCR. Quantification of reactive microglia revealed an anatomically segregated pattern of inflammation within affected brainstem regions, and was higher when compared to controls. While the results of this study support the neuroinvasive potential of SARS-CoV-2 and characterize the role of brainstem inflammation in COVID-19, its potential implications for neurodegeneration, especially in Parkinson's disease, require further investigations.

4.
Int Rev Neurobiol ; 165: 63-89, 2022.
Article in English | MEDLINE | ID: covidwho-2060261

ABSTRACT

The Coronavirus Disease 2019 (Covid-19), caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), has led to unprecedented challenges for the delivery of healthcare and has had a clear impact on people with chronic neurological conditions such as Parkinson's disease (PD). Acute worsening of motor and non-motor symptoms and long-term sequalae have been described during and after SARS-CoV-2 infections in people with Parkinson's (PwP), which are likely to be multifactorial in their origin. On the one hand, it is likely that worsening of symptoms has been related to the viral infection itself, whereas social restrictions imposed over the course of the Covid-19 pandemic might also have had such an effect. Twenty cases of post-Covid-19 para-infectious or post-infectious parkinsonism have been described so far where a variety of pathophysiological mechanisms seem to be involved; however, a Covid-19-induced wave of post-viral parkinsonism seems rather unlikely at the moment. Here, we describe the interaction between SARS-CoV-2 and PD in the short- and long-term and summarize the clinical features of post-Covid-19 cases of parkinsonism observed so far.


Subject(s)
COVID-19 , Parkinson Disease , Parkinsonian Disorders , COVID-19/complications , Humans , Pandemics , Parkinson Disease/complications , SARS-CoV-2 , Post-Acute COVID-19 Syndrome
5.
Int Rev Neurobiol ; 165: 103-133, 2022.
Article in English | MEDLINE | ID: covidwho-2060258

ABSTRACT

The Coronavirus Disease 2019 (Covid-19) pandemic has profoundly affected the quality of life (QoL) and health of the general population globally over the past 2 years, with a clear impact on people with Parkinson's Disease (PwP, PD). Non-motor symptoms have been widely acknowledged to hold a vital part in the clinical spectrum of PD, and, although often underrecognized, they significantly contribute to patients' and their caregivers' QoL. Up to now, there have been numerous reports of newly emerging or acutely deteriorating non-motor symptoms in PwP who had been infected by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), while some of these symptoms, like fatigue, pain, depression, anxiety and cognitive impairment, have also been identified as part of the long-COVID syndrome due to their persistent nature. The subjacent mechanisms, mediating the appearance or progression of non-motor symptoms in the context of Covid-19, although probably multifactorial in origin, remain largely unknown. Such mechanisms might be, at least partly, related solely to the viral infection per se or the lifestyle changes imposed during the pandemic, as many of the non-motor symptoms seem to be prevalent even among Covid-19 patients without PD. Here, we summarize the available evidence and implications of Covid-19 in non-motor PD symptoms in the acute and chronic, if applicable, phase of the infection, with a special reference on studies of PwP.


Subject(s)
COVID-19 , COVID-19/complications , Humans , Pandemics , Quality of Life/psychology , SARS-CoV-2 , Post-Acute COVID-19 Syndrome
8.
J Neurol ; 269(10): 5606-5614, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2041278

ABSTRACT

INTRODUCTION: Levodopa/carbidopa intestinal gel (LCIG) is an effective treatment in patients with advanced Parkinson's disease (PD) with consolidated evidence of clinical efficacy. However, only few studies have assessed long-term safety, causes of discontinuation, mortality, and relative predictors. METHODS: We conducted a retrospective analysis of 79 PD patients treated with LCIG between 2005 and 2020 in two Italian Neurological Centers, recording all adverse events (AEs), including weight loss (WL). Kaplan-Meier curve was used to estimate the time to discontinuation and survival. Cox proportional hazard model was employed to identify predictors of discontinuation and mortality, while Pearson's correlation was used to analyze predictors of WL. RESULTS: The average follow-up was 47.7 ± 40.5 months and the median survival from disease onset was 25 years. There were three cases of polyradiculoneuropathy Guillain-Barre syndrome-like, all occurred in the early years of LCIG treatment. Twenty-five patients died (32%), 18 on LCIG (including one suicide) and seven after discontinuation. The mean WL was 3.62 ± 7.5 kg, which correlated with levodopa dose at baseline (p = 0.002), levodopa equivalent daily dose (LEDD) baseline (p = 0.017) and off-duration (p = 0.0014), but not dyskinesia. Peristomal complications emerged as a negative predictor of discontinuation (p = 0.008). CONCLUSIONS: LCIG has a relatively satisfactory long-term safety profile and efficacy and a relatively low rate of discontinuation. Peristomal complications may represent a predictor of longer duration of therapy. According to the mortality analysis, LCIG patients show a long lifespan. Delaying the initiation of LCIG does not affect the sustainability of LCIG therapy.


Subject(s)
Carbidopa , Parkinson Disease , Antiparkinson Agents/adverse effects , Drug Combinations , Gels/therapeutic use , Humans , Levodopa/therapeutic use , Parkinson Disease/drug therapy , Retrospective Studies , Weight Loss
9.
Int Rev Neurobiol ; 165: 91-102, 2022.
Article in English | MEDLINE | ID: covidwho-2007356

ABSTRACT

Olfactory impairment is a common symptom in Coronavirus Disease 2019 (COVID-19), the disease caused by Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2) infection. While other viruses, such as influenza viruses, may affect the ability to smell, loss of olfactory function is often smoother and associated to various degrees of nasal symptoms. In COVID-19, smell loss may appear also in absence of other symptoms, frequently with a sudden onset. However, despite great clinical interest in COVID-19 olfactory alterations, very little is known concerning the mechanisms underlying these phenomena. Moreover, olfactory dysfunction is observed in neurological conditions like Parkinson's disease (PD) and can precede motor onset by many years, suggesting that viral infections, like COVID-19, and regional inflammatory responses may trigger defective protein aggregation and subsequent neurodegeneration, potentially linking COVID-19 olfactory impairment to neurodegeneration. In the following chapter, we report the neurobiological and neuropathological underpinnings of olfactory impairments encountered in COVID-19 and discuss the implications of these findings in the context of neurodegenerative disorders, with particular regard to PD and alpha-synuclein pathology.


Subject(s)
COVID-19 , Neurodegenerative Diseases , Olfaction Disorders , Parkinson Disease , COVID-19/complications , Humans , Neurodegenerative Diseases/complications , Olfaction Disorders/diagnosis , Parkinson Disease/complications , Protein Aggregates , SARS-CoV-2 , Smell , alpha-Synuclein
10.
PLoS One ; 17(6): e0270024, 2022.
Article in English | MEDLINE | ID: covidwho-1910667

ABSTRACT

During the first wave of infections, neurological symptoms in Coronavirus Disease 2019 (COVID-19) patients raised particular concern, suggesting that, in a subset of patients, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) could invade and damage cells of the central nervous system (CNS). Indeed, up to date several in vitro and in vivo studies have shown the ability of SARS-CoV-2 to reach the CNS. Both viral and/or host related features could explain why this occurs only in certain individuals and not in all the infected population. The aim of the present study was to evaluate if onset of neurological manifestations in COVID-19 patients was related to specific viral genomic signatures. To this end, viral genome was extracted directly from nasopharyngeal swabs of selected SARS-CoV-2 positive patients presenting a spectrum of neurological symptoms related to COVID-19, ranging from anosmia/ageusia to more severe symptoms. By adopting a whole genome sequences approach, here we describe a panel of known as well as unknown mutations detected in the analyzed SARS-CoV-2 genomes. While some of the found mutations were already associated with an improved viral fitness, no common signatures were detected when comparing viral sequences belonging to specific groups of patients. In conclusion, our data support the notion that COVID-19 neurological manifestations are mainly linked to patient-specific features more than to virus genomic peculiarities.


Subject(s)
Ageusia , COVID-19 , Central Nervous System , Genomics , Humans , SARS-CoV-2/genetics
11.
J Affect Disord ; 313: 36-42, 2022 09 15.
Article in English | MEDLINE | ID: covidwho-1907233

ABSTRACT

BACKGROUND: COVID-19 is an infectious disease that has spread worldwide in 2020, causing a severe pandemic. In addition to respiratory symptoms, neuropsychiatric manifestations are commonly observed, including chronic fatigue, depression, and anxiety. The neural correlates of neuropsychiatric symptoms in COVID-19 are still largely unknown. METHODS: A total of 79 patients with COVID-19 (COV) and 17 healthy controls (HC) underwent 3 T functional magnetic resonance imaging at rest, as well as structural imaging. Regional homogeneity (ReHo) was calculated. We also measured depressive symptoms with the Patient Health Questionnaire (PHQ-9), anxiety using the General Anxiety Disorder 7-item scale, and fatigue with the Multidimension Fatigue Inventory. RESULTS: In comparison with HC, COV showed significantly higher depressive scores. Moreover, COV presented reduced ReHo in the left angular gyrus, the right superior/middle temporal gyrus and the left inferior temporal gyrus, and higher ReHo in the right hippocampus. No differences in gray matter were detected in these areas. Furthermore, we observed a negative correlation between ReHo in the left angular gyrus and PHQ-9 scores and a trend toward a positive correlation between ReHo in the right hippocampus and PHQ-9 scores. LIMITATIONS: Heterogeneity in the clinical presentation in COV, the different timing from the first positive molecular swab test to the MRI, and the cross-sectional design of the study limit the generalizability of our findings. CONCLUSIONS: Our results suggest that COVID-19 infection may contribute to depressive symptoms via a modulation of local functional connectivity in cortico-limbic circuits.


Subject(s)
COVID-19 , Depression , Brain/diagnostic imaging , Cross-Sectional Studies , Depression/diagnostic imaging , Humans , Magnetic Resonance Imaging/methods
12.
BMC Neurol ; 21(1): 332, 2021 Aug 30.
Article in English | MEDLINE | ID: covidwho-1379784

ABSTRACT

BACKGROUND: The consequences of strict COVID-19 mobility restrictions on motor/non-motor features in Parkinson's disease (PD) have not been systematically studied but worse mobility and quality of life have been reported. To elucidate this question, 12 mild to moderate PD patients were assessed in March 2020 before and after two months of isolation as part of a clinical study that had to be interrupted due to the pandemic and the implementation of COVID19 mobility restrictions. METHODS: Twelve patients were systematically evaluated before and after the lockdown period as part of a larger cohort that previously underwent thermal water rehabilitation. Clinical outcomes were the Body Mass index, the Mini-Balance Evaluation Systems Test, the MDS-Unified Parkinson's Disease Rating Scale part III, the 6 Minute Walking Test and the New Freezing of Gait Questionnaire. Global cognition was evaluated with the Montreal Cognitive Assessment scale. The impact of COVID-19 restrictions on quality of life and functional independence was evaluated with The Parkinson's disease Quality of life (PDQ-39), the Activities of Daily Living (ADL) and Instrumental Activities of Daily Living questionnaires (IADL) and the Parkinson's disease cognitive functional rating scales (PD-CFRS). RESULTS: After two months of isolation the Mini-BESTest score worsened (p=0.005), and four patients reported one or more falls during the lockdown. BMI increased (p=0.031) while the remaining clinical variables including quality of life did not change. CONCLUSION: We observed moderate worsening at Mini-BESTest, greater risk of falls and increased body weight as consequence of prolonged immobility. We believe negative effects were partially softened since patients were in contact with our multidisciplinary team during the lockdown and had previously received training to respond to the needs of this emergency isolation. These findings highligh the importnace of patient-centered interventions in PD management.


Subject(s)
COVID-19 , Gait Disorders, Neurologic , Mobility Limitation , Parkinson Disease , Accidental Falls , Activities of Daily Living , Communicable Disease Control , Gait Disorders, Neurologic/etiology , Humans , Male , Parkinson Disease/complications , Quality of Life , Risk , SARS-CoV-2
14.
Expert Rev Neurother ; 21(6): 615-623, 2021 06.
Article in English | MEDLINE | ID: covidwho-1203499

ABSTRACT

Introduction: Although in some countries, palliative care (PC) still remains poorly implemented, its importance throughout the course of Parkinson's disease (PD) is increasingly being acknowledged. With an emergence of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) pandemic, growing emphasis has been placed on the palliative needs of people with Parkinson's (PwP), particularly elderly, frail, and with comorbidities.Areas covered: The ongoing COVID-19 pandemic poses an enormous challenge on aspects of daily living in PwP and might interact negatively with a range of motor and non-motor symptoms (NMS), both directly and indirectly - as a consequence of pandemic-related social and health care restrictions. Here, the authors outline some of the motor and NMS relevant to PC, and propose a pragmatic and rapidly deployable, consensus-based PC approach for PwP during the ongoing COVID-19 pandemic, potentially relevant also for future pandemics.Expert opinion: The ongoing COVID-19 pandemic poses a considerable impact on PwP and their caregivers, ranging from mental health issues to worsening of physical symptoms - both in the short- and long-term, (Long-COVID) and calls for specific, personalized PC strategies relevant in a lockdown setting globally. Validated assessment tools should be applied remotely to flag up particular motor or NMS that require special attention, both in short- and long-term.


Subject(s)
COVID-19/epidemiology , Palliative Care , Pandemics , Parkinson Disease/therapy , Aged , COVID-19/complications , COVID-19/psychology , Caregivers/psychology , Humans , Minority Groups , Parkinson Disease/ethnology , Quality of Life , Risk Factors , SARS-CoV-2 , Social Support , Spirituality , Post-Acute COVID-19 Syndrome
16.
Front Neurol ; 12: 633574, 2021.
Article in English | MEDLINE | ID: covidwho-1133935

ABSTRACT

Background/Objective: During the COVID-19 pandemic, smell and taste disorders emerged as key non-respiratory symptoms. Due to widespread presence of the disease and to difficult objective testing of positive persons, the use of short surveys became mandatory. Most of the existing resources are focused on smell, very few on taste or trigeminal chemosensation called chemesthesis. However, it is possible that the three submodalities are affected differently by COVID-19. Methods: We prepared a short survey (TaSCA) that can be administered at the telephone or through online resources to explore chemosensation. It is composed of 11 items on olfaction, taste, and chemesthesis, in order to discriminate the three modalities. We avoided abstract terms, and the use of semiquantitative scales because older patients may be less engaged. Statistical handling included descriptive statistics, Pearson's chi-squared test and cluster analysis. Results: The survey was completed by 83 persons (60 females and 23 males), which reported diagnosis of COVID-19 by clinical (n = 7) or molecular (n = 18) means, the others being non-COVID subjects. Cluster analysis depicted the existence of two groups, one containing mostly asymptomatic and one mostly symptomatic subjects. All swab-positive persons fell within this second group. Only one item, related to trigeminal temperature perception, did not discriminate between the two groups. Conclusions: These preliminary results indicate that TaSCA may be used to easily track chemosensory symptoms related to COVID-19 in an agile way, giving a picture of three different chemosensory modalities.

18.
NPJ Parkinsons Dis ; 6: 18, 2020.
Article in English | MEDLINE | ID: covidwho-731016

ABSTRACT

This Viewpoint discusses insights from basic science and clinical perspectives on coronavirus disease 2019 (COVID-19)/severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection in the brain, with a particular focus on Parkinson's disease. Major points include that neuropathology studies have not answered the central issue of whether the virus enters central nervous system neurons, astrocytes or microglia, and the brain vascular cell types that express virus have not yet been identified. Currently, there is no clear evidence for human neuronal or astrocyte expression of angiotensin-converting enzyme 2 (ACE2), the major receptor for viral entry, but ACE2 expression may be activated by inflammation, and a comparison of healthy and infected brains is important. In contrast to the 1918 influenza pandemic and avian flu, reports of encephalopathy in COVID-19 have been slow to emerge, and there are so far no documented reports of parkinsonism apart from a single case report. We recommend consensus guidelines for the clinical treatment of Parkinson's patients with COVID-19. While a role for the virus in causing or exacerbating Parkinson's disease appears unlikely at this time, aggravation of specific motor and non-motor symptoms has been reported, and it will be important to monitor subjects after recovery, particularly for those with persisting hyposmia.

SELECTION OF CITATIONS
SEARCH DETAIL